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(T1) Super Luminal Galaxies           (10 points)                                                                                

Read the statements given below and state if they are true or false: 

(a) For some galaxies the apparent recession speed exceeds the speed of light. 

(b) The velocity – Distance relation as given by Hubble cannot allow recession velocities to exceed the speed 
of light. 

(c) Hubble-Lemaitre’s law (formerly known as Hubble’s Law) does not violate special relativity. 

(d) If some galaxies would have an apparent recession speed exceeding the speed of light, then the photons 
from those galaxies can never reach us. 

(e) As the expansion of Universe is accelerating, photons emitted right now from galaxies which have apparent 
recession speed equal to the speed of light will never reach us. 

Solution:  

T F T F F (2 points each) 

(T2) Distance                         (10 
points) 

An observer measured trigonometric parallaxes of stars in a star cluster. Due to random errors, the measured 
parallax values are distributed symmetrically around the expected value with standard deviation equal to 0.05 
mas (milliarcsec). Assume there are no systematic errors and assume all stars in the said cluster have the same 
luminosity. It is known that the distance of this cluster from us is R= 5 kpc. 

He gave the data table to 4 of his students (A, B, C and D) and they estimated the distance to the cluster in the 
following ways:  

A. Convert each parallax measurement into distance and then find the average distance (RA) 
B. Take the average of all parallaxes first and then convert the average parallax into distance. (RB) 

C. Convert each parallax measurement into distance and then take the median distance value. (RC) 

D. Find the median value of the parallaxes and then convert the median value into distance. (RD) 

State if the following statements are true or false. In case a given mathematical relation is false, give 
the correct relation. 

(l) If the ith star gave the smallest value of parallax and the jth star gave the highest value of parallax, in 
all likelihood Ri-R > R-Rj 

(m) RA = R (i.e. there is a high chance that the distance estimated by A fairly matches the true distance) 

(n) RB = R (i.e. there is a high chance that the distance estimated by B fairly matches the true distance) 

(o) RC < R (i.e. there is a high chance that the distance estimated by C will be systematically lower than 
the true distance) 

(p) RD = R (i.e. there is a high chance that the distance estimated by D fairly matches the true distance) 

Solution: 

T F T F T (2 points each) 

For parallaxes, we have a Gaussian with µ=0.2 mas and σ=0.05 mas i.e. 25% of the expectation value. 
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If we assume that the lowest and highest values of parallax are symmetric w.r.t. the expected value 
(reasonable assumption if cluster has large number of stars), then their distances would not be symmetric 
w.r.t. the true distance. 

RA > R, RC = R (for statement m and o, marks will be given only if this relation is stated) 

 

(T3) Atmospheric Refraction          (10 points) 

Consider sunrise at Beijing (φ=40°) on the vernal equinox day.  

(a) Let us say rl, rd, rr and ru are distances from the centre of the undistorted disk of the Sun to the edge of the 
disk towards the directions left, down, right and up respectively. What will be the hierarchical relation (<, =, >) 
between the four radii just after the sunrise?  

(b) What is the correction in the time of rise of the top edge of the disk as compared to the case without 
atmosphere? You may assume that typically atmospheric refraction near the horizon is 35’. Please only 
consider the apparent diurnal motion. 

Solution:  

(a) rd < ru < rl = rr           (4 points) 

(b) When the upper edge of the sun is under the horizon with 35′, it will appear on the horizon earlier due to 

the influence of atmospheric refraction. With the apparent diurnal motion, i.e. 

𝜔 = #$%&

'#()$*+,
= '-$%%.

-+#$.%$0'*
= 15.0411 ′ 𝑚⁄ ,        (2 points) 

Ideally one should find time taken by mean sun to travel from 50’ below horizon to 15’ below true horizon. 

Δt = ()%;<-);)
>?@AB

= #).
-).%+--.×DEF+%°

= 3.04 mins       (4 points) 

(T4) Height of a Hill                         (10 points) 

Two friends wanted to measure the height of the hill next to their village (latitude φ=40°).  One of the friends 
climbed to the top of the hill and she agreed to send a light signal to her friend in the village as soon as she 
sees the sunset. On March 21, when they did this experiment, the friend in village received the light signal 4.1 
minutes after the sunset from the village. Estimate the height of the hill and horizon distance for the person at 
the hill top. Ignore atmospheric refraction. 

Solution:    
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First we should realise that the Sun doesn’t set vertically. It sets at an angle of 𝜃 = 90 − 𝜑 = 50°. Thus, the  
horizon depression x will be 

𝑥 = 15.0411′ × 4.1 × 𝑠𝑖𝑛𝜃 = 1.03E𝑠𝑖𝑛50E = 0.787E.      (4 points) 

Let the height of the mountain be H. Let C be the centre of the Earth, point T  - hill top and point T’ is the point 
on the horizon as seen from T. Thus, 

𝑐𝑜𝑠𝑥 = U
𝑅⊕

X𝑅⊕ + 𝐻[
\ 

𝐻 = ]⊕(-<DEF^)
DEF^

= 602 metres         (3 points)  

The distance of horizon (from base of the mountain, along the surface of the earth) is found from the 
rectangular triangle TCT’ as 

 𝐷 = (𝑅⨁ +𝐻)𝑠𝑖𝑛𝑥	 ≈ 𝑅⨁𝑠𝑖𝑛𝑥 = 6.38 × 10#𝑠𝑖𝑛0.787E = 87.6 km   

Alternatively, 𝐷 = 𝑅⨁𝑥 = 6.38 × 10# × 0.787E × 𝜋 ÷ 180E = 87.6 km    (3 points) 

(T5) Sidereal Time           (10 points) 

It is very interesting to observe that on one particular calendar day each year, the mean sidereal time will 
twice be 00:00:00. 

(a) What will be the approximate R.A. of the Sun when this event happens? 

(b) Estimate the exact date in 2018 for this event. 

You may assume that at the Royal Greenwich Observatory, the mean sidereal time (GMST0) was 6.706h at   
0h, 1st January, 2018 (JD2458119.5).  

Solution: 

(1) This can happen if the sidereal time is 00:00:00 just after the midnight and just before the midnight on the 

same day. It means that the sun should be near the Autumn (September) Equinox. Approximate R.A. of the 

Sun is 18h.           (3 points) 

(2)  At 0h, 1st January, 2018 (JD2458119.5), the mean sidereal time GMST0 was 6.706h, i.e. 

GMST0=100.59°. Since one mean solar day is longer than one mean sidereal day with 0.9856º (about 4 

minutes), the GMST will increase  ∆= 0.9856°at next midnight at 2st January, 2018. Therefore, we can first 

calculate how many days it will take for GMST to reach 360°, i.e.  

𝑇 = #$%°<ijklm
∆

= #$%°<-%%.)n°
%.n0)$°

= 263.20                   (3 points) 

i.e. after completion of 263 days, the GMST at midnight will be 359.80o. 

Thus, GMST will be 00:00:00 on 264th day at 00:00:48 and then again at 23:56:52 on the same day.  

            (2 points) 
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The 264th day in the calendar of 2018 is 21st September 2018.                   (2 points) 

(T6) Observe the Sun with FAST         (25 points) 

The Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a single-dish radio telescope located 
in Guizhou Province, China. The physical diameter of the dish is 500 m, but during observations, the effective 
diameter of the collecting area is 300 m.  

Consider observations of the thermal radio emission from the photosphere of the Sun at 3.0 GHz with this 
telescope and a receiver with bandwidth 0.3 GHz.  

(a) Calculate the total energy (E⊙) that the receiver will collect during 1 hour of observation. 
(b) Estimate the energy needed to turn over one page of your answer sheet (E′). Hint: the typical surface 

density of paper is 80 gm-2.   
(c) Which one is larger? 

Solution:   

Rayleigh-Jeans law to calculate the thermal emission from the sun at 3 GHz states, 

𝐵p =
2𝑘r𝑇
𝑐'

𝜈'  

which is the power emitted per unit emitting area, per steradian, per unit frequency. Therefore, the solar 

luminosity at 3 GHz should be: 

𝐿p = 𝐵p ⋅ 4𝜋𝑅⊙
'            (3 points) 

 At the distance of the earth (1 AU), the monochromatic flux from the sun at 3 GHz should be: 

𝑓p =
𝐿p

4𝜋𝐷'
 

 Hence the energy flux that FAST will receive is: 

𝐹p = 𝑓p ⋅ 𝛥𝜈 ⋅ 𝜋'
z{|

+
                                                (8 points) 

 And the total energy that the receiver will collect during 1 hour of observation is: 

𝐸⊙ = 𝐹p𝛥𝑡 =
'��l
D|

𝜈'
]⊙
|

�|
⋅ 𝜋' z{

|

+
𝛥𝜈𝛥𝑡 = 8.5 × 10<)𝐽                        (8 points) 

 Then we can calculate the work we need to turn over one piece of the answer sheet (A4 paper). The 
mass of an A4 paper (297mm×210mm) is: 

𝑚 = 𝜌 ⋅ 𝐿-𝐿'                                        (2 point) 

 Therefore, the energy of turning it over should be around: 

𝐸. = 𝑚𝑔 ⋅ �|
'
≈ 5 × 10<#𝐽                        (3 points) 

 As a consequence, 𝐸. > 𝐸⊙.             (1 point) 
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(T7) Sunspot            (25 points) 

Magnetic fields are important in the physics of stars and sunspots. As an approximation, we can model the 
photosphere of the Sun consisting of a plasma, which can be simply treated as a single component ideal gas, 
and a magnetic field (B), which has an associated magnetic pressure 𝑝r =

r|

'�m
. It behaves like any other 

physical pressure except that it is carried by the magnetic field rather than by the kinetic energy of particles.  

Assume that the number density of particles in the photosphere is constant everywhere, but the magnetic field 
inside the sunspot (Bin=0.1T) is much stronger than outside (Bout=5×10-3T). From the blackbody spectrum, the 
temperature inside the sunspot is Tin~4000K, while the temperature outside is Tout~6000K (which is why the 
sunspot looks darker).  For the sunspot to be stable, the inside must be in equilibrium with the outside.  

(a) Estimate the number density of plasma particles in the solar photosphere.  

(b) Compare your answer with an estimate of the number density of particles in the atmosphere at the surface 
of the Earth. 

Solution:  

(a) The pressure is from all directions. The plasma inside the sunspot must have the same total pressure as 
the plasma outside to maintain equilibrium on the border.  

The kinetic pressure inside the sunspot is 𝑝� = 𝑛�𝑘r𝑇�, where ni is the number density inside the sunspot. 
And also, 𝑝� = 𝑛�𝑘r𝑇�.                        (3 points)   

(𝑝�𝑉 = 𝑁�𝑘r𝑇� is also correct. But it’s better to write the pressure in terms of number density)   

From the assumption, 𝑛� = 𝑛� = 𝑛. The equilibrium requires:     (3 points) 

𝑛𝑘r𝑇� +
r�
|

'�m
= 𝑛𝑘r𝑇� +

r�|

'�m
                       (8 points) 

Then 

𝑛 = -
'�m��

Xr�
|<r�|[

(l�<l�)
= 1.43 × 10'#𝑚<#                                   (6 points) 

(b) On the Earth, 𝑝� = 𝑛�𝑘r𝑇�where PE ≈ 105 Pa and TE ≈ 300 K. 

Thus, 𝑛� =
��
��l�

= 2.4 × 10')𝑚<#        (4 points) 

This means that the number density of the atmospheric particles at the surface of the earth is at least 100 
times larger that the number density of particles in the solar photosphere (of course the mass density is even 
higher).            (1 point) 

(T8) A Possible Dark Matter Deficient Galaxy       (25 points) 

Earlier this year, a team of astronomers reported their discovery of a galaxy with much less dark matter than 
the galaxy evolution model predicted (van Dokkum et al. 2018, Nature). This galaxy, named NGC 1052-DF2, 
is located close to the elliptical galaxy NGC 1052 (D=20Mpc from the Sun) in the sky. The shape of NGC 
1052-DF2 resembles an ellipse with semi major axis (a) of 22.6" and �

�
= 0.85. Half of the total light from the 



 

  
 

Theoretical Solution 
Page 6 of 14 

galaxy comes from within this ellipse and the mean surface brightness within the ellipse is about 24.7 mag 
arcsec-2. 

(a) Calculate the total apparent magnitude of this galaxy. 

(b) The team suggested the galaxy is a companion of NGC 1052. Determine the total mass of stars in NGC 

1052-DF2, assuming it has a mass to light ratio �j j⊙⁄
� �⊙⁄ � of 2.0. 

(c) The team identified 10 globular clusters in NGC 1052-DF2 with a mean galactocentric distance of 78.4". 
They also measured the velocity dispersion of these clusters to be not more than 8.4 km/s. Estimate the 
dynamical mass of this galaxy. For simplicity, assume the mass distribution in the galaxies is uniform and is 
spherically symmetric. 

(d) This discovery was challenged by other groups (Kroupa et al., Nature, 2018, Truijlo et al., MNRAS, 
2018), who claimed that NGC 1052-DF2 is not a satellite of NGC 1052, and it is located at a much smaller 
distance to us. Show why a smaller distance would weaken the assertion of the dark matter deficiency in 
NGC 1052-DF2. 

Solution:  

(1) Total area with in the ellipse (actually, half-light ellipse) of NGC 1052-DF2 is: 

        (2 points) 

Magnitude of the part of the galaxy within the ellipse: 

     (2 points) 

Total magnitude of the whole galaxy: 

         (2 points) 

(2) Absolute mag of the galaxy:  

                            (2 points) 

Convert to solar luminosity: 
����
�⊙

= 10<%.+(jm,���<jm,⊙) = 1.2 × 100         (2 points) 

Thus, the total stellar mass should be: 
j���

j⊙
=

����
�⊙

× j
�
= 2.4 × 100          (2 points) 

(3) Mean galactocentric distance of globular clusters: 

𝑟�D =
��

'%$'$)
= 7.6 kpc           (2 points) 

Using viral theorem: 

, 

, 

〈𝑈〉 = 	 #
)
ij|

 
            (4 points) 

Thus the maximal dynamical mass of this system should be: 

𝑀z¢£ =
) �{¤|

#i
= 2.1 × 100𝑀⊙, even less than the total stellar mass within this radius.                  (3 

points) 



 

  
 

Theoretical Solution 
Page 7 of 14 

(4) From Question 2 and 3, we know:  

             

However, 𝑀z¢¥ ∝ 𝐷             (2 points) 

Thus 

           (2 points) 

If the distance measured is smaller by a certain factor, the stellar mass to dynamical mass ratio would 
increase by the same factor, thus the dark matter in NGC 1052-DF2 would not be as deficient as Dragonfly 
team claimed. 

(T9) Radio Galaxy           (25 points) 

An observer wants to use the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in China to 
observe a radio galaxy at redshift of 𝑧 = 0.06. We assume that the radio source is compact compared to the 
beam size of the telescope at the observing frequencies, i.e., the source is point-like as seen through the 
telescope. To detect a point source with FAST, it must be sufficiently strong (bright) relative to the noise level 
(for single polarization observations), σ, which depends on the bandwidth, 𝛥𝜈, and the integration time (the 
radio astronomy equivalent of exposure time), ti, as follows: 

𝜎 =
2𝑘r𝑇F¢F
𝐴�ª𝑡�𝛥𝜈

 

where 𝑇F¢F is the system temperature (about 150 K in the frequency range of 0.28 GHz – 0.56 GHz and 25 K 
in the frequency range of 1.05 GHz – 1.45 GHz), and Ae = 4.6x104 m2 is the effective area of the telescope 
taking into account the total efficiency of the instrument.  

This radio galaxy has an observed continuum flux density of 𝑓p = 2.5 × 10<#𝐽𝑦 at an observing frequency of 
0.4 GHz.  The bandwidth 𝛥𝜈 for the continuum observation centered at 0.4 GHz is 2.8×108 Hz. 

(a) In order to detect the continuum flux density at 0.4 GHz with a signal-to-noise ratio of 30 (a so-called 30σ 
detection), what is the required integration time, ti?  

(b) We want to search for the neutral Hydrogen (HI) in the galaxy using 21cm absorption line. The HI 21cm 
line, with rest frame frequency of 1.4204 GHz. Calculate the observed frequency (υobs) of the HI line for this 
galaxy.   

(c) The radio continuum emission from this galaxy can be described by a power law 𝑓p ∼ 𝜈­ , with a spectral 
index of 𝛼 = −0.2. Calculate the continuum flux density at 𝜈E�F  for this galaxy.  

(d) The line width of the HI 21cm absorption line is 90 km/s. Calculate the line width in Hz at the observing 
frequency of 𝜈E�F .  According to Figure 1, the HI 21cm line absorbs 4% of the continuum flux density (on 
average) over the line width of 90 kms-1. In order to detect the absorption line at ≥3σ in three consecutive 30 
kms-1 channels, what is the required integration time?   

 
Figure 1: Spectrum of the HI 21cm absorption relative to the continuum emission in the radio galaxy 
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Solution: 

(a)  for signal to noise ratio of 30 of flux density of 2.5×10-3 Jy,  

σ  = 2.5×10-3/30 Jy ≈ 8.33×10-5 Jy  = 8.33 ×10-31 Wm-2Hz-1 (4 points) 

Tsys = 150 K ,  Δν = 280 MHz,   

Using the equation above, tint ~ 42 s (more exactly 41.8 s) (3 points) 

(b)  νobs = 1.4204 GHz / (1+z) = 1.4204/1.06 = 1.34 GHz (3 points) 

(c) 𝑓 E�F°-.#+±²³ = 𝑓%.+±²³ ´
-.#+
%.+
µ
<%.'

= 2.5	 × 10<#Jy × ´-.#+
%.+
µ
<%.'

= 1.96	 × 10<#Jy (3 points) 

(d)  Line width :  90 kms-1 / c × νobs = 90 / (2.9979×105) × 1.34 GHz = 0.402 MHz  (2 points) 

 4% of 1.96×10-3 Jy continuum  = 7.84×10-5 Jy   (1 point) 

 ≥ 3σ means σ = 7.84×10-5 Jy / 3 = 2.61×10-5 Jy = 2.61×10-31 Wm-2Hz-1 (values around 2.6×10-5 Jy are ok) 

 in three consecutive 30 kms-1 channels: Δν = 0.402 MHz/3 = 0.134 MHz (6 points) 

 Tsys = 25 K  

Using equation (1), tint = 24700s ≈ 6.9 hours       (3 points) 

(T10) Vega and Altair           (75 points) 

As per a very famous Chinese folklore about love, Vega and Altair are two lovers. It is said that they can 
meet each other once every year on a bridge made up of birds over the Milky Way. The parameters of two 
stars are given in the table below. For the purpose of this question, assume that the coordinate frame is fixed 
(i.e. not affected by precession or motion of the Sun). 
 

Star Right Ascension 
(J2000.0) 

Declination 
(J2000.0) 

Parallax 
(mas) 

Proper Motion Radial 
Velocity 
(km/s) 

µα cosδ (mas/year) µδ   (mas/year)  

Vega 18h36m56.49s +38o 47’ 07.7” 130.23 +200.94 +286.23 -13.9 

Altair 19h50m47.70s +8o 52’ 13.3” 194.95 +536.23 +385.29 -26.1 
Based on this data, answer the following questions： 
(a) (9 points) What is the angular separation of the two stars? 
(b) (6 points) Calculate the distance (in parsecs) between Vega and Altair. 
(c) (3 points) Calculate position angles of the proper motion vectors of each of these two stars. 
 
For parts d-g, assume that the angular velocity of the stars on the celestial sphere remains constant. This is 
not a physical situation but this is an assumption to simplify the problem. 
(d) (2 points) How many common points on the celestial sphere are there which can be reached by both these 
stars?  
(e) (20 points) Find the coordinates of the closest such point.  
(Note: Drawing the situation on a celestial sphere will help you in visualising the situation) 
(f)  (8 points) Find when (which year) each of these stars were / will be at that point. 
(g) (5 points) When Altair was / will be at that point, what would be its angular separation from Vega? 
(h) (22 points) Find coordinates of any point (if it exists) in 3-D space which was /will be visited by both 
these stars. Do not ignore radial velocities for this part of the question. 
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Solution: 

(a) Assuming the positions of the two starts are: Vega: (α1,δ1); Altair : (α2,δ2) 

X𝛼-,𝛿-[ = (279.23538E, 38.78547E) and X𝛼',𝛿'[ = (297.69875E, 8.87036E)              (2 points) 

Cosine formula of the spherical geometry is given by: 

𝑐𝑜𝑠[𝑎] = 𝑐𝑜𝑠[𝑏]𝑐𝑜𝑠[𝑐] + 𝑠𝑖𝑛[𝑏]𝑠𝑖𝑛[𝑐]𝑐𝑜𝑠[𝐴]                                     (0.5 point) 

In our triangle, b = (90 – δ1), c = (90 – δ2) and A = (α2 - α1). Then the angular distance rd between Vega and 
Altair is:  

𝑐𝑜𝑠[𝛽] = 𝑐𝑜𝑠[90E − 𝛿-]𝑐𝑜𝑠[90E − 𝛿'] + 𝑠𝑖𝑛[90E − 𝛿-]𝑠𝑖𝑛[90E − 𝛿']𝑐𝑜𝑠[𝛼' − 𝛼-];   (3 points) 

𝑐𝑜𝑠[𝛽] = 𝑐𝑜𝑠[51.21453E]𝑐𝑜𝑠[81.12964E] + 𝑠𝑖𝑛[51.21453E]𝑠𝑖𝑛[81.12964E]𝑐𝑜𝑠[18.46337E];  

                    (1.5 points) 

𝛽 = 34.19582E                       (2 points) 

 (b) The distance of Vega is: 𝑟- = 1 (130.23 × 10<#)⁄ = 7.6787𝑝𝑐 

The distance of Altair is:  𝑟' = 1 (194.95 × 10<#)⁄ = 5.1295𝑝𝑐     (2 points) 

Using the Law of Cosines：  𝑑' = 𝑟-' + 𝑟'' − 2𝑟-𝑟'𝑐𝑜𝑠[𝛽]      (2 point) 

we can obtain the distance: 𝑑 = 4.4855𝑝𝑐        (2 points) 

(c) Given the proper motions and radial velocities of the two stars, the directions of their movements on the 
celestial sphere can be estimated. 

For Vega: 

𝜇­-𝑐𝑜𝑠𝛿- = 200.94; 𝜇Á- = 286.23 

 𝜃- = 𝑎𝑟𝑐𝑡𝑎𝑛 Â�ÃÄDEFÁÄ
�ÅÄ

Æ × -0%&

Ç
= 35.0697E     (2 points) 

For Altair: 

𝜇­'𝑐𝑜𝑠𝛿' = 536.23; 𝜇Á' = 385.29 

𝜃' = 𝑎𝑟𝑐𝑡𝑎𝑛 Â�Ã|DEFÁ|
�Å|

Æ × -0%&

Ç
= 54.302E     (1 points) 

(d) As the position angles of the proper motion of two stars is different, the stars’ paths will intersect. As the 
paths are circular on celestial sphere, they will intersect in exactly two points.     

   (2 points) 

(e) Let the closer point of intersection be I with the coordinates (α3,δ3). 

In triangle PVA, 𝑃𝐴𝑉 = 𝑎𝑟𝑐𝑠𝑖𝑛 ÂF�£ÉÊËF�£ÊÉ
F�£ÉË

Æ = 𝑎𝑟𝑐𝑠𝑖𝑛 ÂF�£(­Ä<­|)F�£(n%
&<ÁÄ)

F�£Ì
Æ = 26.055E  

𝑃𝑉𝐴 = 𝑎𝑟𝑐𝑠𝑖𝑛 ÂF�£ÉÊËF�£ÊË
F�£ÉË

Æ = 𝑎𝑟𝑐𝑠𝑖𝑛 ÂF�£(­Ä<­|)F�£(n%
&<Á|)

F�£Ì
Æ = 146.196E                               (5 points) 

Note that angle PVA is more than 90o, which will be evident from the diagram.                             (1 point)  

 

The motion of the stars on the celestial sphere will always be along some great circle. So VAI is a spherical 
triangle. Using four parts formula for VAI 

𝑐𝑜𝑡𝑉𝐼 =
𝑐𝑜𝑠𝑉𝐴𝑐𝑜𝑠𝐼𝑉𝐴 + 𝑠𝑖𝑛𝐼𝑉𝐴𝑐𝑜𝑡𝑉𝐴𝐼

𝑠𝑖𝑛𝑉𝐴
 

𝑐𝑜𝑡𝑉𝐼 =
𝑐𝑜𝑠𝑉𝐴𝑐𝑜𝑠𝐼𝑉𝐴 + 𝑠𝑖𝑛𝐼𝑉𝐴𝑐𝑜𝑡𝑉𝐴𝐼

𝑠𝑖𝑛𝑉𝐴
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𝑉𝐼 = 90E − 𝑎𝑟𝑐𝑡𝑎𝑛 U
𝑐𝑜𝑠34.19582E𝑐𝑜𝑠(68.900E) + 𝑠𝑖𝑛(68.900E)𝑐𝑜𝑡(99.643E)

𝑠𝑖𝑛34.19582E
\ = 76.085E  

           (5 points) 

by sine rule, 𝐴𝐼 = 𝑎𝑟𝑐𝑠𝑖𝑛 ÂF�£ÉÎF�£ÎÉË
F�£ÉËÎ

Æ = 𝑎𝑟𝑐𝑠𝑖𝑛 ÂF�£Ï$.%0)
&F�£$0.n%%&

F�£nn.$+#&
Æ = 66.715E  

        (2 points counted in next part) 

Now we use triangle PVI 

by cosine rule,  𝑐𝑜𝑠[𝑃𝐼] = 𝑐𝑜𝑠[𝑃𝑉]𝑐𝑜𝑠[𝑉𝐼] + 𝑠𝑖𝑛[𝑃𝑉]𝑠𝑖𝑛[𝑉𝐼]𝑐𝑜𝑠[𝑃𝑉𝐼]; 

𝑐𝑜𝑠[90E − 𝛿#] = 𝑐𝑜𝑠[90E − 𝛿-]𝑐𝑜𝑠[𝑉𝐼] + 𝑠𝑖𝑛[90E − 𝛿-]𝑠𝑖𝑛[𝑉𝐼]𝑐𝑜𝑠[180E − 𝜃-];  

𝑠𝑖𝑛[𝛿#] = 𝑐𝑜𝑠[51.215E]𝑐𝑜𝑠[76.085E] + 𝑠𝑖𝑛[51.215E]𝑠𝑖𝑛[76.085E]𝑐𝑜𝑠[144.930E]; 

Thus, 𝛿# = −27.945E          (4 points) 

 

Applying sine rule, 𝑉𝑃𝐼 = 𝑎𝑟𝑐𝑠𝑖𝑛 ÂF�£ÊÉÎF�£ÉÎ
F�£ÊÎ

Æ = 𝑎𝑟𝑐𝑠𝑖𝑛 ÂF�£-++.n#%
&F�£Ï$.%0)&

F�£--Ï.n+)&
Æ = 39.148E  

Hence, 𝛼# = 𝛼- − 𝑉𝑃𝐼 = 279.235E − 39.148E = 240.087E ≈ 16Ð0¥21F   (5 points) 

Out of 5 points, 1 point is reserved for realising that the intersection point is in past path. 

(f) The total velocity along the great circle for Vega is  

𝜇- = ª(𝜇­-𝑐𝑜𝑠𝛿-)' + 𝜇Á-' = √200.94' + 286.23' = 349.72	mas/year   (2 points) 

Number of years = ÉÎ
�Ä
= Ï$.%0)×#$%%

%.#+nÏ'
≈ 783200years      

It will happen in the year 781200 BCE       (2 points) 

Similarly, 𝜇' = 660.30and number of years =363700 years     

It will happen in the year 3617 BCE       (2 points) 

(g) After 363700 years, Vega would have traversed 35.335o along its path.   (3 points) 

Thus, its separation from Altair will be (76.085o – 35.335o) = 40.750o   (2 points) 

 

(h) In earth centric Cartesian frame, coordinates of Vega (in units of parsec) will be: 

𝑥- = 𝑟-𝑐𝑜𝑠𝛿-𝑐𝑜𝑠(360E − 𝛼-) = 0.96062pc 

𝑦- = 𝑟-𝑐𝑜𝑠𝛿-𝑠𝑖𝑛(360E − 𝛼-) = 5.90793pc 

𝑧- = 𝑟-𝑠𝑖𝑛𝛿- = 4.80998pc 

Similarly, coordinates of Altair will be, x2= 2.35579, y2= 4.48736 pc and z2= 0.79097 pc.    
       (6 points) 

Here, we are assuming the North as positive x-direction and pole as positive z-direction. 

The direction vectors for velocities in spherical coordinates are 

𝑣- = (−13.9,7.33,10.45)and 𝑣' = (−26.9,19.57,14.06)   (4 points) 

The same in Cartesian coordinates will be 

𝑣^- = 𝑣 -𝑐𝑜𝑠𝛿-𝑐𝑜𝑠𝛼- − 𝑣­-𝑠𝑖𝑛𝛼- − 𝑣Á-𝑠𝑖𝑛𝛿-𝑐𝑜𝑠𝛼- = 4.45 

𝑣¢- = −𝑣 -𝑐𝑜𝑠𝛿-𝑠𝑖𝑛𝛼- − 𝑣­-𝑐𝑜𝑠𝛼- + 𝑣Á-𝑠𝑖𝑛𝛿-𝑠𝑖𝑛𝛼- = −18.33 

𝑣Ó- = 𝑣 -𝑠𝑖𝑛𝛿- + 𝑣Á-𝑐𝑜𝑠𝛿- = −0.56 
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Similarly, Cartesian velocity vector of Altair will be, v2= (4.33, -33.85, 9.87). (8 points) 

Lastly, we evaluate the value of determinant, 

| (x1-x2)  (y1-y2)  (z1-z2)|          |-1.40      1.42      4.02| 

|    vx1         vy1      vz1  |     =   |4.45    -18.33    -0.56|  

|    vx1         vy1      vz1  |          |4.33    -33.85     9.87| 

= 279.82 – 65.81 – 286.48 = -72.47 

As the value of the determinant is non-zero, the direction vectors of these two stars do not cross each other. 
Hence no such point can exist.     (4 points) 

(T11) Thermal History of the Universe                        (75 
points) 

Based on Einstein’s general relativity, Russian physicist Alexander Friedmann derived the Friedmann 
Equation by which the dynamics of a homogeneous and isotropic universe can be well described. The 
Friedmann Equation is usually written as follows: 

�
𝑎̇
𝑎
�
'
=
8𝜋𝐺
3

(𝜌¥ + 𝜌 ) +
𝛬𝑐'

3
−
𝑘𝑐'

𝑎'
. 

We define the Hubble parameter as = �̇
�
 , where 𝑎 is the scale factor and 𝑎̇ is the rate of change of scale factor 

with time. Thus, the Hubble parameter is a function of cosmic time. In the Friedmann Equation, 𝜌¥ is the 
density of matter, including dark matter and baryons, 𝜌   is the density of radiation, 𝛬 is the cosmological 
constant, and 𝑘 is the curvature of space. Subscript 0 indicates the value of a physical quantity at present day, 
e.g. 𝐻% is the present value Hubble parameter. Also, to avoid confusion with the reduced Hubble parameter, 
we use the reduced Planck Constant ℏ = ℎ/(2𝜋) instead of the Planck constant ℎ. 

(a) (5 points) What are the dimensions of Hubble parameter? One can define a characteristic timescale for the 
expansion of the Universe (i.e. Hubble time 𝑡Ú) using the Hubble parameter. Calculate the present-day Hubble 
time 𝑡Ú%.   

(b) (5 points) Let us define the critical density 𝜌D as the matter density required to explain the expansion of a 
flat universe without any radiation or dark energy. Find an expression of the critical density, in terms H and G. 
Calculate the present critical density 𝜌D%.  

(c) (6 points) It is convenient to define all density parameters in a dimensionless manner like 𝛺� =
Ü�
Ü{

, i.e. the 
ratio of density to critical density. The Friedmann Equation can be rewritten using these dimensionless density 
parameters simply as,  Ωm +  Ωr +  ΩΛ +  Ωk = 1. 

Use this information to find expression for ΩΛ  and Ωk, in terms H, c, Λ, k and a. 

(d) (7 points) Another equation which is valid for matter, radiation and dark energy is often called the Fluid 
Equation: 𝜌̇ + 3 �̇

�
´𝜌 + �

D|
µ = 0, where 𝑝 is the pressure of some component, 𝜌 is the density and 𝜌̇ is the rate 

of change of density over time. Radiation contains photons and massless neutrinos, and they both travel at the 
speed of light. The pressure exerted by these particles is 1/3 of their energy density. Show that the density of 
radiation 𝜌  ∝ (1 + 𝑧)+, where 𝑧 is cosmological redshift. You may note that if  Ü̇

Ü
= 	𝑛	 �̇

�
 , then ρ ∝ 𝑎£ 

(e) (4 points) We know that the value of the cosmological constant 𝛬 doesn’t evolve. Its equation of state has 
a form 𝑝 = 𝑤𝜌ß𝑐', where w is an integer. Find the value of w. 

(f)  (13 points) Planck time, defines a characteristic timescale before which our present physical laws are no 
longer valid, and where quantum gravity is needed. The expression for Planck time can be written in terms of 
ℏ, G and c and non-dimensional coefficient of this expression in SI units is of the order of unity. Using 
dimensional analysis, find expression for Planck time and estimate its value. 



 

  
 

Theoretical Solution 
Page 12 of 14 

(g) (7 points) Planck length defines the length scale associated with Planck time is given by 𝑙Ê = 𝑐𝑡Ê. The 
minimal mass of a black hole, also called Planck mass, is defined as the mass of a black hole whose 
Schwarzschild radius is two times the Planck length. 

Derive the Planck mass 𝑀Ê  and calculate 𝑀Ê𝑐' in GeV. This mass is considered to be an upper threshold for 
elementary particles, beyond which they will collapse to a black hole.   

(h) (4 points) At the very beginning (soon after the Planck time), all the particles were in thermal equilibrium 
in a primordial soup. As temperature decreased, different particles then decoupled from the primordial soup 
one by one and could travel freely in the Universe. Photons decoupled at ~300000 years after the Big Bang. 
These photons emitted at that time are what constitutes the cosmic microwave background (CMB), which 
follows the Stefan-Boltzmann law for blackbody radiation. 

𝜀  =
𝜋'

15ℏ#𝑐#
(𝑘r𝑇)+, 

Show that the temperature of the CMB follows 𝑇 (1 + 𝑧)⁄ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.   

(i) (16 points) With the expansion of the Universe, radiation density dropped more quickly than matter density, 
and at some epoch the matter density was equal to the radiation density. Radiation contains both photons and 
neutrinos. Apart from photons, neutrinos additionally contribute to the radiation energy density by 68% (i.e. 
𝛺 % = 1.68𝛺â%, where γ indicates photons).   Estimate the redshift of matter-radiation equality 𝑧�ã in terms of 
𝛺¥% and reduced Hubble parameter ℎ = Úm

-%%�¥	FäÄj�DäÄ
 You may use the current temperature of the CMB: 

𝑇% = 2.73𝐾.   

(j) (8 points) The neutrinos decoupled from the primordial soup when the temperature of the universe was 
around 1 MeV. At this time, the radiation density in the universe was much more than all other components. 
Estimate the time (𝑡 = -

'Ú
) when neutrinos decoupled, and express it in seconds since the big bang. 

Solution:  

(a) One can argue this in different ways. One can note that the Hubble parameter is often called Hubble constant, 
but actually it’s not a constant. The dimensions of Hubble parameter is the inverse of time [𝑇<-]. Alternatively, 
one can simply look at unit of H0 in the table of constants and conclude the same.  (1 point) 

It’s natural to define a timescale as the reciprocal of Hubble parameter:𝑡Ú =
-
Ú

, and this is the Hubble time 
which is a characteristic timescale of Universe expansion.       
  (2 points) 

Present-day Hubble time tH0 =14.46 Gyr.        (2 points) 

(b) From Friedmann Equation, the critical density is defined in the way of ´�́
�
µ
'
= 0Çi

#
𝜌D, thus 𝜌D =

#Ú|

0Çi
.  

             
     (2 points) 

Substitute H0 = 2.19 x 10-18 s-1 into above, we have 𝜌D% = 8.59 × 10<'Ï 𝑘𝑔 𝑚#⁄     (3 points) 

(c)  Ωm +  Ωr +  ΩΛ +  Ωk = 1 
𝜌¥
𝜌D

+
𝜌 
𝜌D
+ 𝛺ß + 𝛺� = 1 

8𝜋𝐺
3𝐻'

(𝜌¥ + 𝜌 ) + 𝛺ß + 𝛺� = 1 

0Çi
#
(𝜌¥ + 𝜌 ) + 𝐻'𝛺ß + 𝐻'𝛺� = 𝐻'                                                                   (2 points) 

Comparing this with the Friedmann equation 𝐻' = 0Çi
#
(𝜌¥ + 𝜌 ) +

ßD|

#
− �D|

�|
. 
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𝛺ß =
ßD|

#Ú|
 and 𝛺� = − �D|

�|Ú|
          (4 points) 

(d) Pressure exerted by the radiation is  𝑝 = -
#
𝜌 𝑐' 

Thus, the Fluid Equation becomes, 𝜌 ̇ + 3
�̇
�
´𝜌  +

-
#
𝜌 µ = 0      (2 points) 

Üç̇
Üç
= −4 �̇

�
 implying  

Thus 𝜌  ∝ 𝑎<+.                        (3 points) 

And we know 𝑎 = -
-èÓ

, hence 𝜌  ∝ (1 + 𝑧)+.       (2 points) 

(e) In the fluid equation, 𝜌̇ + 3 �̇
�
(𝜌 + 𝑞𝜌) = 0. 

But the cosmological constant does not evolve. So 𝜌ß̇ = 0  
#�̇Üê
�

(1 + 𝑞) = 0 which means q = -1.        (4 points) 

(f) From the units, one can figure out that ℏ has the dimensions of [𝑀𝐿'𝑇<-]. 

G has the dimensions of [𝑀<-𝐿#𝑇<'].  

And speed of light c has dimensions of [𝐿𝑇<-].        (5 points) 

We assume that Planck time is given by ℏ^𝑐¢𝐺Ó. In order to make it a time dimensional quantity, the 
following equation must hold:𝑇 = (𝑀𝐿'𝑇<')^(𝐿𝑇<-)¢(𝑀<-𝐿#𝑇<')Ó. 𝑇 = 𝑀^<Ó𝐿'^è¢è#Ó𝑇<^<¢<'Ó. 

     (3 points) 

From 𝑥 − 𝑧 = 0,2𝑥 + 𝑦 + 3𝑧 = 0,−𝑥 − 𝑦 − 2𝑧 = 1, we get 𝑥 = -
'
, 𝑦 = <)

'
, 𝑧 = -

'
. Thus, the Planck time is 

approximately 𝑡� ≈ ªℏ𝐺 𝑐)⁄ .              (3 
points) 

Substitute the numerical values into it and get:𝑡Ê = 5.4 × 10<++𝑠.      (2 points) 

(g) Schwarzschild radius of a black hole equals to 2𝑙Ê: 𝑟F =
'ijë
D|

= 2𝑐𝑡Ê = 2𝑐ªℏ𝐺 𝑐)⁄ ,     (3 points) 

𝑀Ê = ªℏ𝑐 𝐺⁄ .                (2 points) 

𝑀Ê𝑐' = ªℏ𝑐) 𝐺⁄ = 1.22 × 10-n𝐺𝑒𝑉.         (2 points) 

(h) Given the energy density, and the result of problem d, we find that 𝜀  ∝ 𝑇+, 𝜀  = 𝜌 𝑐', 𝜌  ∝ (1 + 𝑧)+. 

Thus 𝑇 ∝ 1 + 𝑧, l
-èÓ

= 𝑐𝑜𝑛𝑠𝑡.          (4 points) 

(i) The matter-radiation equality means 𝛺 X𝑧�ã[ = 𝛺¥X𝑧�ã[. We need to derive the behavior of this two 
density parameters. Obviously 𝛺¥(𝑧) = 𝛺¥%(1 + 𝑧)# and 𝛺 (𝑧) = 𝛺 %(1 + 𝑧)+.   (4 points) 

Thus 1 + 𝑧�ã =
í*m
íçm

. 𝛺 % is the density parameter of CMB radiation and can be calculated.  (1 point) 

By the definition of density parameter of photon radiation (footnote gamma: 𝛾, 𝛺â% =
Üïm
Ü{m

= ðïm
D|

0Çi
#Ú|

=
ðïm
D|

0Çi
#ÚÄmm| Ð|

, where 𝐻-%% = 100 𝑘𝑚 𝑠⁄ 𝑀𝑝𝑐⁄ .            (4 points) 

The energy density of blackbody photon radiation is 𝜀â =
Ç|

-)ℏñDñ
(𝑘r𝑇)+, thus 

𝛺â%ℎ' =
Ç|

-)ℏñDò
𝑘r+

0Çi
#ÚÄmm| 𝑇%+ = 2.47 × 10<).        (4 points) 

But there is also an additional contribution from neutrinos of about 68%, so the total density parameter of 
radiation is𝛺 %ℎ' = 𝛺â%ℎ' × 1.68 = 4.15 × 10<).      (2 points) 
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Hence 1 + 𝑧�ã =
í*m
íçm

= 2.4 × 10+𝛺¥%ℎ'.       (1 point) 

(j) At that time, the redshift is  

1 + 𝑧 =
1𝑀𝑒𝑉

𝑘r × 2.73𝐾
= 4.25 × 10n. 

Thus the scale factor 𝑎 = -
-èÓ

= 2.35 × 10<-%.         (2 points) 

Only considering radiation dominated Universe, Friedmann Equation can be written as 

´�́
�
µ
'
= 0Çi

#
𝜌  =

0ÇiÜçm
#�ó

,          (2 points) 

�́
�
= -

�|
ô0ÇiÜçm

#
    

𝑎'𝐻 = ô0Çiíçm
#

𝜌D% = ª𝐻%'𝛺 %        (1 points) 

Thus, we have, 𝑡 = -
'Ú
= �|

'ôÚm|íçm.
= 1.3𝑠 ∼ 1𝑠. 

Thus neutrino decoupled at about 1 s after big bang.      (3 points) 


