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1. Famous astronomical events 10 p

Correct solution: (10 p)

1. 1764: Discovery of the first planetary nebula

2. 1781: Discovery of Uranus

3. 1801: Discovery of Ceres

4. 1838: First successful measurement of a stellar parallax

5. 1877: Discovery of Phobos and Deimos

6. 1929: Discovery of the expansion of the Universe

7. 1943: Discovery of stellar populations

8. 1963: First identification of a quasar with an optical source

9. 1976: Viking probes arrived at planet Mars

10. 1986: Latest perihelion of comet 1/P Halley

11. 1990: Launch of the Hubble Space Telescope

• 1990: Launch of the Hubble Space Telescope 11
• 1976: Viking probes arrived at planet Mars 9
• 1877: Discovery of Phobos and Deimos 5
• 1986: Latest perihelion of comet 1/P Halley 10
• 1801: Discovery of Ceres (asteroid / dwarf planet) 3
• 1781: Discovery of Uranus (planet) 2
• 1838: First successful measurement of a stellar parallax 4
• 1764: Discovery of the first planetary nebula 1
• 1943: Discovery of stellar populations 7
• 1963: First identification of a quasar with an optical source 8
• 1929: Discovery of the expansion of the Universe 6

The score of the faultless order is 10 points. The list will be checked pairwise. In each case when a later
event precedes an earlier event in your solution, one point will be deducted.
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2. Deflection of radio photons in the gravitational field of solar system bodies 10 p

One has to notice that in the case of the Sun d = R�, that is d equals the solar radius. (1 p)

The angular deflection scales as m/r (mass over radius) of the deflector body, so one has to consider
Mb/Rb, where b stands for Jupiter and Moon, respectively.

(2.1)
∆θb

∆θ�
=

Mb/Rb

M�/R�
(2 p)

This means that:

(2.2) ∆θb = ∆θ�
Mb/Rb

M�/R�
(1 p)

a) Jupiter

Substituting the masses and radii one gets:

∆θJ = 0.017′′ = 17 mas (2 p)

The deflection of radio waves by Jupiter’s gravitational field is greater than 0.1 mas, so it is observable
with the VLBI network. The answer is: YES (1 p)

b) Moon

Substituting the masses and radii one gets:

∆θM = 0.000 026′′ = 0.026 mas (2 p)

The deflection of radio waves by Moon’s gravitational field is smaller than 0.1 mas, so it is not
observable with the VLBI network. The answer is: NO (1 p)
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3. The supermassive black hole in the centre of Milky Way Galaxy and M87 10 p

a) The scale of the black hole shadow is set by the Schwarzschild radius RS = 2GM/c2. The light ring
radius is 3RS. (2 p)

For a diffraction limited instrument the angular resolution is bounded by

(3.1) θres =
2R

d
≥ 1.22λ

D
(2 p)

where λ is the wavelength and D is the diameter of the instrument.

Using the expression for the Schwarzschild radius:

(3.2) D ≥ 1.22λ

6RS
d =

1.22c2λd

12GM
(2 p)

b) For λ = 1.3 mm, this gives

(a) D > 7200 km ≈ 1.1R⊕ (1 p)

(b) D > 6400 km ≈ 1R⊕ (1 p)

c) (B) Interferometry with array of radio telescopes (2 p)
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4. Improving a common reflecting telescope 10 p

a) Let us designate the (unknown) original limiting magnitude of this telescope as m1, and refer to
the intensity (at the focal plane) as I1. The new limiting magnitude is m2. Due to the additional
intensity, which is due to the better reflectivity of the mirror surfaces, the stellar intensity which will
result in the same limiting illumination at the focal plane, will be proportionally smaller, with the
ratio of the reflectivities of the new and old mirror coatings:

(4.1) I2 =
ε1ε1
ε2ε2

I1 (2 p)

The reflectivities should be multiplied twice, since the light coming from the star, loses some energy
twice, suffering reflection on each of the two mirrors.

Now applying the well-known magnitude formula:

(4.2) m1 −m2 = −2.5 log
I1
I2

= −2.5 log
ε22
ε21

(2 p)

With numerical values:

m1 −m2 = −0.16m

And thus:

m2 = m1 + 0.16m (1 p)

b) Yes, it is well appreciable by most human eyes. Therefore, especially the deep-sky-object
hunters are using higher reflectivity mirrors in their telescopes. (2 p)

c) The similar way of thinking gives:

(4.3) m2 = m1 + 2.5 log
I1
I2

= m1 + 2.5 log
ε22ε3
ε31

(2 p)

With numerical values:

m1 −m2 = −0.25m

And thus:

m2 = m1 + 0.25m (1 p)
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5. Cosmic Microwave Background Oven 10 p

a) If the body is spherical, its radius r can be calculated as:

(5.1) V =
m

%
=

4

3
r3π → r =

Å
3m

4π%

ã1/3
The area of the body:

(5.2) A = 4r2π = 4π

Å
3m

4π%

ã2/3
= (4π)1/3

Å
3m

%

ã2/3
(1 p)

According to the Stefan-Boltzmann law, the total energy radiated per unit surface area across all
wavelengths per unit time:

(5.3) j = σT 4
CMB (1 p)

The CMB is isotropic, which means the absorbed radiation by unit surface area of the spherical body
is the same independent of the surface’s normal direction. (1 p)

The total absorbed energy by the spherical body per unit time:

(5.4) P = jA = σT 4
CMB × (4π)1/3

Å
3m

%

ã2/3
(1 p)

Its numerical value:

P ≈ 2.3× 10−6 W (1 p)

b) The mean energy of CMB photons:

(5.5) 〈ε〉 = 3kTCMB = 1.1× 10−22 J (1 p)

The number of CMB photons the body would absorb per second:

(5.6) n =
P

〈ε〉 (1 p)

Its numerical value:

n = 2.1× 1016 s−1 (1 p)

c) Denote the time necessary for raising the temperature by ∆t, so:

(5.7) P∆t = Cm∆T → ∆t =
Cm∆T

P
(1 p)

Its numerical value:

∆t ≈ 1.1× 1011 s ≈ 1 253 200 d ≈ 3430 yr (1 p)
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6. The height of the chimney of Tiszaújváros power plant 20 p

a) (B) the one on December 16 (1 p)

At a given moment of the day, the Sun elevation is lower in winter on the northern hemisphere.

b) (B) late in the morning (1 p)

The shadows point slightly west of north. In fact these satellite images are taken at around 9:45
UTC (10:45 Central European Time).

c) The measured shadow lengths are x1 = 125 m (epoch 1, summer solstice) and x2 = 780 m (epoch 2,
winter solstice).

Let the unknown height of the chimney be h. The chimney and its shadow form the legs of a
right-angled triangle and thus

(6.1) tanα1 = h/x1

(6.2) tanα2 = h/x2, (1 p)

where α1 and α2 are the Sun elevation angles at epoch 1 and epoch 2, respectively. (1 p)

At the time of the summer and winter solstices, the Earth is located at opposite sides of the Sun
during its orbital revolution. Since the Equator is tilted by ε ≈ 23.5° to the orbital plane, at a
given point of the surface, and at a given time of the day, the Sun elevation angles will differ by
α1 − α2 = 2ε (here we ignore refraction and that the satellite images were not taken on the exact
solstice days). (4 p)

Notice that, to a good approximation, α1 − α2 ≈ 45°. Assuming α1 = α2 + 45° makes the solution a
lot easier. Using the trigonometric identity

(6.3) tanα1 = tan(α2 + 45°) =
tanα2 + tan 45°

1− tanα2 tan 45°
,

and substituting tan 45° = 1, Eq. (6.3) becomes

(6.4) tanα1 =
1 + tanα2

1− tanα2

. (4 p)

Substituting tanα1 and tanα2 from Eqs. (6.1) and (6.2) into Eq. (6.4), one gets a quadratic equation
for the unknown h:

(6.5)
h

x1
=

1 +
h

x2

1− h

x2

. (2 p)

Reducing this equation to the standard format

(6.6) h2 + h(x1 − x2) + x1x2 = 0,

and according to the quadratic formula, the two roots are obtained as

(6.7) h1,2 =
x2 − x1 ±

√
(x1 − x2)2 − 4x1x2

2
. (1 p)

Now with the measured values of x1 = 125 m and x2 = 780 m, the two roots for h are h1 = 426 m
and h2 = 229 m. (1 p)
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Obviously, only one of the solutions is valid for our case.

One may simply notice that h1 ≈ 426 m seems just too high for a chimney (would in fact be
comparable to the Empire State Building in New York, with 443 m; the Eiffel tower in Paris is only
324 m high).

Alternatively, substituting h1 = 426 m into Eq. (6.2), we obtain the Sun elevation angle at around
the winter solstice, α2 = arctan(h1/x2) ≈ 28.7°. However, at the geographic latitudes of Hungary,
the Sun does not rise above ≈ 19° at this time of the year, so the larger value obtained for h is clearly
invalid. (2 p)

Note that according to the official data, the Tiszaújváros power plant has a chimney as high as
h = 250 m.

d) (B) and (E) (2 p)
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7. Effect of sunspots on solar irradiation 20 p

a) The Sun’s total power can be calculated from the Stefan-Boltzmann law:

(7.1) P = AσT 4, (1 p)

where A is the emitting surface, σ is the Stefan-Boltzmann constant and T is the (effective) temper-
ature.

The total power emitted homogeneously and isotropically by the Sun (P�) distributes uniformly on
the surface area of a sphere with radius d⊕ = 1 au. Hence:

(7.2) I� =
P�

4πd2⊕
=
σ4πR2

�T
4
�

4πd2⊕
= σ

R2
�T

4
�

d2⊕
, (2 p)

where R� and T� denote the radius and effective temperature of the Sun, respectively.

With the numerical values taken from the Table of constants:

I� = 1365.9 W m−2 (1 p)

b) In the first days of January the Earth is in perihelion, while in the beginning of July it is in aphelion.
Therefore, instead of the mean Earth-Sun distance (i.e. the semi-major axis of the Earth’s orbit),
now one should substitute the perihelion and aphelion distances, respectively. Therefore, one has to
write that:

(7.3) I�,perihelion =
P�

4π(d⊕(1− e))2 = σ
R2
�T

4
�

(d⊕(1− e))2 =
I�

(1− e)2 ,

(7.4) I�,aphelion =
P�

4π(d⊕(1 + e))2
= σ

R2
�T

4
�

(d⊕(1 + e))2
=

I�
(1 + e)2

, (1 p)

where e = 0.016 710 22 is the eccentricity of the Earth’s orbit (see the Table of constants).

With numerical values:

in early January: I�,perihelion = 1412.7 W m−2 (1 p)

in early July: I�,aphelion = 1321.4 W m−2 (1 p)

The ratio of the values: I�,perihelion/I�,aphelion = 1.0691 . The perihelion irradiation is higher by
about 7 %. (1 p)

c) In this case the total power of the Sun becomes

(7.5) P ′� = σ
[
T 4
�(A� − Asp) + T 4

spAsp
]
, (2 p)

where A� stands for the solar surface, while Asp is the area of the spot (as a circle).

Thus, the solar constant takes the following form:

(7.6) I ′� =
P ′�

4πd2⊕
=
σπ
[
T 4
�(4R2

� −R2
sp) + T 4

spR
2
sp
]

4πd2⊕
=

σ

4d2⊕

[
T 4
�(4R2

� −R2
sp) + T 4

spR
2
sp
]

= (2 p)

I�

ñ
1−
Å
Rsp

2R�

ã2
+

Å
Rsp

2R�

ã2 ÅTsp

T�

ã4ô
= I�

ñ
1−
Å
Rsp

2R�

ã2Ç
1−
Å
Tsp

T�

ã4åô
= 0.9991I� (2 p)

With numerical value:

I ′� = 1364.6 W m−2 (1 p)
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d) As we have seen, the ratio is

A =
I ′�
I�

=
1364.64 W m−2

1365.92 W m−2
= 0.9991 ,

or, converting it into percentage, the solar constant in the case of the spotted Sun will be lower by
0.09 %.

When this sunspot emerges in the surface of the Sun, solar emission no longer will be isotropic,
i.e. uniform in every directions. When the sunspot is fully seen from the Earth, the ratio of the
irradiation of the Earth in the spotted and unspotted cases will be equal to the ratio of the solar
powers in the two cases, i.e.,

(7.7) P�,disk = σT 4
�A� = σπT 4

�R
2
� (1 p)

(7.8) P ′�,disk = σ
[
T 4
�(A� − Asp) + T 4

spAsp
]

= σπ
[
T 4
�(R2

� −R2
sp) + T 4

spR
2
sp
]

(1 p)

and therefore, the ratio of the irradiations (or the effective solar constants) can be written as:

(7.9) A′ =
P ′�,disk

P�,disk
=
T 4
�(R2

� −R2
sp) + T 4

spR
2
sp

T 4
�R

2
�

= 1−
Å
Rsp

R�

ã2 ñ
1−
Å
Tsp

T�

ã4ô
(2 p)

With numerical values:

A′ = 0.9963 (1 p)

Thus, when the spot directed towards the Earth the total irradiation of the Earth becomes weaker
by 0.37 %.
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8. Amplitude variation of RR Lyrae stars 20 p

a) The total power of the star in the given lambda:

(8.1) I(λ, T,R) = C1R
2F (λ, T ) = C1R

2 1

λ5
exp

Å
− Cb
λT

ã
(1 p)

Converting to magnitudes:

(8.2) m(λ, T,R) = −2.5 log I(λ, T ) = C2 + 12.5 log λ− 5 logR− 2.5 log e
Cb
λT

(1 p)

Then:

(8.3) A(λ) = |m(λ, Tmax)−m(λ, Tmin)| = 2.5 log eCb
λ

Å
1

Tmin
− 1

Tmax

ã
(1 p)

Thus:

(8.4)
A(λ1)

A(λ2)
=
λ2
λ1

(1 p)

With numerical values:
A(λ1)

A(λ2)
=

2× 10−6 m

5× 10−7 m
= 4 (1 p)

b) From Eq. (8.3):

(8.5) Amax(λ1) =
2.5 log eCb

λ1

Å
1

Tmin
− 1

Tmax

ã
(2 p)

With numerical values:

Amax(λ1) =
2.5 log e× 0.0144 m K

5× 10−7 m

Å
1

6000 K
− 1

7400 K

ã
= 1m (1 p)

c) If we ignore the temperature variation, then:

(8.6) A(λ) = |m(λ,Rmax)−m(λ,Rmin)| = 5 log
Rmax

Rmin
(2 p)

With numerical values:

A(λ) = 5 log
1.05

0.9
= 0.33m (1 p)

d) From Eq. (8.4):

(8.7) Amax(λ2) = Amax(λ1)
λ1
λ2

= 1m × 1

4
= 0.25m (1 p)

Similarly:

Amin(λ1) =
2.5 log e× 0.0144 m K

5× 10−7 m

Å
1

6100 K
− 1

6900 K

ã
= 0.6m (2 p)

and

Amin(λ2) = Amin(λ1)
λ1
λ2

= 0.6m × 1

4
= 0.15m (2 p)

At λ1 = 500 nm the amplitude changes by 1m − 0.6m = 0.4m, while at λ2 = 2000 nm it is reduced to
0.25m − 0.15m = 0.1m, that is a significant difference.

e) B and C (4 p)
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9. Distance of the Lagrangian point L2 of the Earth–Moon system 20 p

The relay satellite revolves on a circular orbit, due to the gravitational forces of the Earth and the Moon.
Its net acceleration is:

(9.1)
Å
r +

M

m+M
R

ã
ω2 =

GM

(R + r)2
+
Gm

r2
, (4 p)

where R and r denote the (constant) distances between Earth and Moon, and between Moon and the
satellite, respectively, while M and m stand for the masses of Earth and Moon, respectively. Using
Kepler’s third law, the angular velocity of the satellite, which is equal to the angular velocity of the Moon
can be written as

(9.2) ω2 =
4π2

P 2
=
G(M +m)

R3
. (2 p)

Substituting Eq. (9.2) into Eq. (9.1), eliminating the gravitational constant (G), and introducing the
dimensionless quantity x = r/R, we obtain

(9.3)
(M +m)x+M

R2
=

M

R2(1 + x)2
+

m

R2x2
(2 p)

(9.4) (M +m)x+M =
M

(1 + x)2
+
m

x2
. (2 p)

Assuming that x = r/R � 1 we can apply the approximation (1 + x)−2 ≈ 1 − 2x, which leads to the
following expression:

(9.5) (M +m)x+M = M(1− 2x) +
m

x2
, (2 p)

from which we get

(9.6) x3 =
m

3M +m
. (2 p)

Substituting the mass ratio m/M = 0.0123 of the Earth-Moon system one can obtain

(9.7) x = 0.159 83, (2 p)

and therefore

(9.8) r = xRMoon = 0.159 83× 384 400 km = 61 440 km (2 p)

From this result we should subtract the radius of the Moon, and such a way we obtain that

(9.9) h = r −RMoon = 61 440 km− 1737 km = 59 703 km (2 p)

Here is another solution, which is erroneous in principle (or say, "approximative") but numerically gives
an almost equivalent result.

One might say, that m � M and therefore m can be neglected either in the left hand side of Eq. (9.1)
and in the r.h.s. of Eq. (9.2), i.e. one can use the following approximation:

(9.10) M +m ≈M
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In this case instead of Eq. (9.6) one can arrive at

(9.11) x3 =
m

3M
,

which leads to

(9.12) x = 0.160 05,

and therefore,

r = xRMoon = 0.160 05× 384 400 km = 61 524 km

and, finally

h = r −RMoon = 61 524 km− 1737 km = 59 787 km

This latter should be accepted as a full point solution, too. If, however, m is dropped out only from one
of the two equations, then at least 2 points should be subtracted.
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10. South → East → North 20 p

1. The trivial solution of the problem is the North Pole (N). Starting from here we travel 6378 km to the
South (ÑA) along a meridian (e.g. Greenwich meridian), then 6378 km to the East along a parallel (ÃB),
and finally 6378 km to the North (B̄N) (see figure (a), where the black dashed lines are the Equator and
the Greenwich meridian).

For the general solution, mark the path to be taken in one direction with s and determine what it may be!

Let us denote the longitude and latitude of the point A by λA and ϕA, and the point B by λB and ϕB.

The triangle ANB is a spherical one only if the points A and B are on the Equator (see figure (b)), i.e.
ϕA = ϕB = 0° and s = Rπ/2, because the arc ÃB is lying along a great circle only in this case, otherwise
it is a part of a parallel. The point A and B can be below the Equator as well (figure (c)).

N

A

B

λB − λA

(a) s = 6378.0 km, λ0 = +45◦, ϕ0 = +45◦

ϕA = ϕB = +32.704◦, λB − λA = 68.090◦, λA = 0◦, λB = +68.090◦

N

A B

λB − λA

(b) s = 10 018.5 km, λ0 = +45◦, ϕ0 = +45◦

ϕA = ϕB = 0◦, λB − λA = 90◦, λA = 0◦, λB = +90◦

N

A
B

λB − λA

(c) s = 10 700.0 km, λ0 = +45◦, ϕ0 = +45◦

ϕA = ϕB = −6.122◦, λB − λA = 96.673◦, λA = 0◦, λB = +96.673◦

Next, we measure the angles in radians.

The central angle of the arc ÑA on the meridian fitting to the point A (O is the centre of the sphere):

(10.1) NOA^ =
π

2
− ϕ, where ϕ = ϕA = ϕB

Thus the length s of the arc ÑA:

(10.2) s = R
(π

2
− ϕ

)
, where s < Rπ

The radius of the latitude circle fitting to the points A and B:

(10.3) rAB = R sin
(π

2
− ϕ

)
= R cosϕ

The central angle of the arc ÃB is λB − λA, thus the length of the arc ÃB:

(10.4) s = rAB (λB − λA) = R cosϕ (λB − λA)

From the Eq. (10.2) and Eq. (10.4):

(10.5) ϕ =
π

2
− s

R
and λB − λA =

s

R cosϕ
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Substitute the expression of ϕ from the first equation into the second equation:

(10.6) λB − λA =
s

R cosϕ
=

s

R

cos
(π

2
− s

R

) =

s

R

sin
s

R

For a given arc length of s (s < Rπ) the latitude ϕ of the points A and B, and the difference between
their longitudes we can calculate from the following equations:

(10.7) ϕ =
π

2
− s

R
and λB − λA =

s

R

sin
s

R

***** Supplement. It is just for the sake of completeness, not necessary for the full marks.

It is well known, that

(10.8) lim
x→0

sinx

x
= lim

x→0

x

sinx
= 1,

thus λB − λA = 1 in case of s→ 0.

Therefore the difference in longitude has a lower limit (1), but it has no upper limit. This means, that the
distance between the points A and B will increase by increasing s, the difference between their longitudes
will approximate 2π (see figure (d)), and in case of λB − λA = 2π the points A and B will be the same
(see figure (e)). With further increasing of s the difference λB − λA will be larger than 2π (see figure (f)),
thus we have to stop at that point on the circle where the length of the path along it reaches the value of
s, and then turn to the North.

S

A

B

λB−λA

(d) s = 17 000.0 km, λ0 = +45◦, ϕ0 = −45◦

ϕA = ϕB = −62.717◦, λB − λA = 333.161◦, λA = 0◦, λB = +333.161◦

S

A B

λB−λA

(e) s = 17 206.566 km, λ0 = +45◦, ϕ0 = −45◦

ϕA = ϕB = −64.573◦, λB − λA = 360.000◦, λA = 0◦, λB = +360.000◦

S

A

B

λB−λA

(f) s = 17 600.0 km, λ0 = +45◦, ϕ0 = −45◦

ϕA = ϕB = −68.107◦, λB − λA = 424.020◦, λA = 0◦, λB = +424.020◦

The arc length slim corresponding to the "limit case" of λB − λA = 2π we can derive from the numerical
solution of the following transcendent equation:

slim

R
− 2π sin

slim

R
= 0

Thus find the root of the function

f(s) =
s

R
− 2π sin

s

R
,
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i.e. the value slim, where f(slim) = 0. We can solve it by iteration using e.g. the Newton–Raphson method:

sk+1 = sk −
f(sk)

f ′(sk)
, k = 0, 1, 2, . . .

The first derivative of the function f(s):

f ′(s) =
1

R
− 2π

R
cos

s

R

We know that the parallel in question runs south from the Equator, thus a good initial value for the
iteration could be s0 = Rπ/2 + ∆s, where ∆s = 1000 km.

The result of the iteration and the corresponding latitude with three decimal places:

slim = 17 206.566 km, ϕlim = −64.573°

λB − λA is strictly increasing function of s and

(10.9) lim
s/R→0

λB − λA = 1, lim
s/R→π

λB − λA =∞,

thus for any values of 0 < s < Rπ can be found an appropriate angle λB − λA (see the figure below).

0

2π

4π

6π

8π

10π

0 π/6 2π/6 3π/6 4π/6 5π/6 π

(λ
B
−
λ
A
)

s/R

(λB − λA) = (s/R)/ sin(s/R), R = 6378 km

slim/Rslim/R

***** End of supplement.

In conclusion, the solution in this case is the North Pole (N). (2 p)

For the value of s = 6378 km the solution is an (a)-type curve. The coordinates of the turning points are:

λA = 0° , λB = 68.09° , ϕA = ϕB = 32.704° (3 p)
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2. The non-trivial solutions are similar to the (e)-type ("lasso") solution of the previous part, only the
starting point is not the North Pole, but its location depends on the given value of arc length s. The circle
of the lasso will run south from the (e)-type "limit circle", because the circumference of parallels running
north from it are greater than the north-south arc.

The procedure is the following.

Knowing s, we have to find the parallel around the South Pole (S), whose circumference is an integer
multiple of s. (2 p)

If the corresponding latitude is ϕD, then:

(10.10) 2kπR cosϕD = s, k = 1, 2, 3, . . . (5 p)

If the latitude of the sought starting point C is ϕC , then the length s of the arc to be taken along the
meridian:

(10.11) s = R (ϕC − ϕD)

From the Eqs. (10.10) and (10.11):

(10.12) ϕC = ϕD + 2kπ cosϕD, k = 1, 2, 3, . . .

Thus:

(10.13) ϕD = − arccos
s

2kπR
, k = 1, 2, 3, . . . (2 p)

and

(10.14) ϕC = − arccos
s

2kπR
+
s

R
, k = 1, 2, 3, . . . (2 p)

The negative sign denotes that the parallel is in the southern hemisphere.

So if the starting point is not the North Pole (N), there are infinitely many solutions.

For the value of s = 6378 km the first 5 (k = 1, . . . , 5) value for ϕD in degrees with 3 decimal places:

ϕD1 = −80.842°, ϕD2 = −85.436°, ϕD3 = −86.959°, ϕD4 = −87.72°, ϕD5 = −88.176° (2 p)

The first 5 (k = 1, . . . , 5) value for ϕC in degrees with 3 decimal places:

ϕC1 = −23.546°, ϕC2 = −28.14°, ϕC3 = −29.663°, ϕC4 = −30.424°, ϕC5 = −30.88° (2 p)

In conclusion, starting to the South from a point of the parallel marked with a dashed red line (C), we
get to a point on a parallel marked with a continuous red line (D). On this parallel we travel a full circle
to the East, then we get back to the point D, then turn to North and travel back to starting point C.

For the further values of k the procedure is very similar, but we have to perform two full circles along the
continuous green parallel, three along the blue, four along the gold, five along the brown and so on.

Such kind of solution exists for any values of 0 < s < slim.
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C

D

(g) s = 6378.0 km, λ0 = +45◦, ϕ0 = −30◦

ϕD1 = −80.842◦, ϕD2 = −85.436◦, ϕD3 = −86.959◦, ϕD4 = −87.720◦, ϕD5 = −88.176◦

ϕC1 = −23.546◦, ϕC2 = −28.140◦, ϕC3 = −29.663◦, ϕC4 = −30.424◦, ϕC5 = −30.880◦
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11. Identification of light curve type of selected variable stars 25 p

a) The score for each correct answer: 1 point (8 p)

• Heart-beat star 8
• RR Lyrae type (RRab subclass) pulsating variable star 4
• Eclipsing binary of Algol type (semi-detached) with a pulsating component 6
• α2 CVn star 5
• W Vir type (Population II) Cepheid pulsating variable 3
• Detached eclipsing binary with strong reflection effect 2
• Contact eclipsing binary of W UMa type 1
• Rotationally variable (spotted) star 7

b) The values below have been determined by an AoV period searching algorithm and rounded to 2
decimal places. The range of ±5 % is also given for each value: the period in this range is acceptable.
The score for each correct answer: 2 points. (16 p)

1. RW Dor P ≈ 0.29 d 0.28 d ≤ P ≤ 0.30 d

2. FO Eri P ≈ 2.20 d 2.09 d ≤ P ≤ 2.31 d

3. UY Eri P ≈ 2.21 d 2.10 d ≤ P ≤ 2.32 d

4. ST Pic P ≈ 0.49 d 0.47 d ≤ P ≤ 0.51 d

5. AH Col P ≈ 1.10 d 1.04 d ≤ P ≤ 1.16 d

6. VV Ori P ≈ 1.49 d 1.42 d ≤ P ≤ 1.56 d

7. TIC 147272181 P ≈ 0.55 d 0.52 d ≤ P ≤ 0.58 d

8. 24 Eri P ≈ 8.12 d 7.71 d ≤ P ≤ 8.53 d

c) (D) Supernova in a distant galaxy (ASASSN-18tb) (1 p)
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12. Distance to a Near-Earth Object 25 p

a) The geometric situation is the following: (5 p)

Zenith in Nagykanizsa

Zenith in Windhoek

Equator

Fig. 12.1: N : Nagykanizsa, W : Windhoek, O: centre of Earth, A: asteroid,
D: distance from the centre of Earth to the asteroid

(
D = OA

)
, R: radius of the Earth

b) One can recognize that the triangle NOW is an isosceles triangle, two sides (ON and OW ) are equal
to each other in length:

(12.1) ON = OW = R (1 p)

Therefore the angles α = ONW^ = OWN^. For the NOW triangle we can write, that:

(12.2) 2α + ϕ1 + ϕ2 = 180°→ α = 90°− ϕ1 + ϕ2

2
(1 p)

Let us denote the direct – i.e. measured through the body of the Earth, not on the surface – distance
between Nagykanizsa and Windhoek by d: d = NW . This distance can be obtained straightforward
by the cosine theorem (one has to take care that the absolute values of the latitudes should be added
inside the cosine function):

(12.3) d =
»
R2 +R2 − 2R2 cos(ϕ1 + ϕ2) = R

»
2(1− cos(ϕ1 + ϕ2)) (2 p)

With numerical values:

d = 1.133 05R (1 p)

Let us use the following notations:

(12.4) x1 = NA, x2 = WA, p = p1 + p2

For the NOWA quadrilateral we can write that:

(12.5) ϕ1 + ϕ2 + (180°− z1) + p+ (180°− z2) = 360° (1 p)

and therefore:

(12.6) p = z1 + z2 − (ϕ1 + ϕ2) (1 p)
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For the NWA triangle we can write that:

(12.7)
x1
d

=
sin(180°− z2 − α)

sin p
and

x2
d

=
sin(180°− z1 − α)

sin p
(2 p)

Thus:

(12.8) x1 = d
sin(z2 + α)

sin(z1 + z2 − (ϕ1 + ϕ2))
and x2 = d

sin(z1 + α)

sin(z1 + z2 − (ϕ1 + ϕ2))
(2 p)

D can be obtained either from the triangle NOA or WOA by the cosine theorem:

(12.9) D2 = R2 + x21 − 2Rx1 cos(180°− z1)

or

(12.10) D2 = R2 + x22 − 2Rx2 cos(180°− z2) (2 p)

Let us take the sum of them:

(12.11) 2D2 = 2R2 + (x21 + x22) + 2R(x1 cos z1 + x2 cos z2), (1 p)

where we have used that cos(180°− x) = − cosx.

(If someone determines D only from one of the two (NOA, WOA) triangles, 1 point can be deducted,
because that means, we ignore the error bars of one of the measurements in a significant way.)

After substitution and dividing by two one gets:

(12.12) D2 = R2 + d2
sin2(z1 + α) + sin2(z2 + α)

2 sin2(z1 + z2 − (ϕ1 + ϕ2))
+Rd

sin(z2 + α) cos z1 + sin(z1 + α) cos z2
sin(z1 + z2 − (ϕ1 + ϕ2))

(3 p)

This contains only known quantities. After substitution we get (notice that for alpha and D we need
the absolute values of the geographical latitudes):

α = 55.5° (1 p)

D = 65.8R = 1.1 dMoon (2 p)

So, the asteroid is at 65.8 Earth-radii from the centre of the Earth. This is slightly more than the
distance to the Moon.
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13. Distance to the Coma galaxy cluster 40 p

a) The mean radial velocity of the cluster, from the data given in the table, is

〈vr〉 ≈ 6731 km s−1 (5 p)

Using the Hubble law in the following form

vr = H0D, (2 p)

where vr is the mean radial velocity in km/s, D is the distance in Mpc, and H0 = 70 km s−1 Mpc−1

is the Hubble constant, we can get

D =
vr

H0

With numerical values:

D = 96 Mpc (1 p)

b) The angular diameter of the cluster is θ = 100′ = 6000′′. Applying the definition of the parsec, 1′′

angular distance from 1 pc distance corresponds to 1 au (Astronomical Unit, 1 au ≈ 1.5× 108 km),
i.e.

d [AU] = θ [′′]×D [pc] (3 p)

Therefore, θ = 6000′′ from D = 96 Mpc = 96× 106 pc gives (with 1 Mpc = 3.086× 1022 m):

d = 5.77× 1011 au = 8.63× 1022 m = 2.80 Mpc (1 p)

Alternative solution: 100′ = 1.67° = 0.0291 rad. For such small angles d ≈ θD. If θ is expressed in
radians, then d and D have the same units. Thus, if D = 96 Mpc, then

d = 0.0291× 96 Mpc = 2.80 Mpc

c) In the virial theorem

(13.1) 〈K〉 =
1

N

N∑
i=1

1

2
mi(vi − vm)2

is the mean kinetic energy of N galaxies. The ith galaxy has mass mi and velocity vi, and vm is the
mean velocity of the cluster.

(13.2) 〈U〉 = − 3

5

1

N

N∑
i=1

GM

R
mi

is the mean gravitational potential energy of N galaxies (having individual masses mi as above)

filling in a sphere of R radius, while G is the gravitational constant and M =
N∑
i=1

mi is the total mass

of the cluster.
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If the orbital velocity vectors are distributed randomly, then

(13.3)
1

N

N∑
i=1

(vi − vm)2 =
1

N

N∑
i=1

3(vi,r − vm,r)
2 =

N − 1

N

N∑
i=1

3(vi,r − vm,r)
2

N − 1
→ 3σ2

r , if N →∞,

where vi,r is the radial velocity for the ith galaxy, and σr is called the velocity dispersion of the cluster.

Combining Eq. (13.1) and Eq. (13.3) one can get:

〈K〉 =
3

2
mσ2

r (2 p)

Inserting 〈K〉 into the equation of virial theorem gives:

−2× 3

2
mσ2

r = −3mσ2
r = 〈U〉 (2 p)

Using Eq. (13.2) to express 〈U〉 one can get

〈U〉 = − 3

5
m
GM

R

1

N

N∑
i=1

1 = − 3

5
m
GM

R
, (2 p)

because
N∑
i=1

1 = N .

Inserting this expression into the one above, we get:

−3mσ2
r = − 3

5
m
GM

R
(2 p)

Dividing by −3m both sides, and expressing M we finally arrive at

M =
5Rσ2

r

G
, (2 p)

which is the expression of the virial mass.

d) The radial velocity dispersion of the data given in the table is the same as the standard deviation of
the data around the mean. The mean velocity, 〈vr〉 = 6731 km s−1, was already derived in part a).
Thus (depending on how we define the standard deviation):

σr,N =

Ã
1

N

N∑
i=1

(vr − 〈vr〉)2 = 1184 km s−1

or

σr,N−1 =

Ã
1

N − 1

N∑
i=1

(vr − 〈vr〉)2 = 1214 km s−1 (10 p)

Inserting this value into the expression of the virial mass and using R ≈ 1.40 Mpc as the cluster
radius (from b)), the result is:

MN =
5× (1.40× 3.086× 1022 m)× (1.184× 106 m s−1)2

6.67× 10−11 m3 kg−1 s−2
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MN = 4.53× 1045 kg ≈ 2.28× 1015 M�

or

MN−1 =
5× (1.40× 3.086× 1022 m)× (1.214× 106 m s−1)2

6.67× 10−11 m3 kg−1 s−2

MN−1 = 4.77× 1045 kg ≈ 2.40× 1015 M� (2 p)

e) Using the virial mass from d) and the given total luminosity of the cluster one can get:

MN

L
=

2.28× 1015 M�
5× 1012 L�

= 455M�/L� ≈ 460M�/L�

or

MN−1

L
=

2.40× 1015 M�
5× 1012 L�

= 479M�/L� ≈ 480M�/L� (1 p)

This mass-luminosity ratio is much higher than that of the individual galaxies which is typically in
between 1 and 100. (1 p)

f) (A) and (D) (4 p)
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14. Photographing a nanosatellite 60 p

a) As it was suggested in the hint the key is a comparison of the sunlight scattered from a 10 cm×10 cm
aluminium plate and the Moon to the observer (both are nearly at the local zenith).

Let the distance of the Moon and the satellite from the observing site be dMoon, and dMASAT, respec-
tively. Under the mentioned "ideal" circumstances, when both the Moon and the satellite is near
the local zenith: dMASAT = 900 km, while

(14.1) dMoon = sMoon −REarth −RMoon, (2 p)

where the average distance between the centre of Earth and Moon sMoon is included in the Table of
constants.

Let the intensity coming from the Sun and scattered back to the direction of the observer be I, this
is considered practically the same at the solar distance of the Moon and the satellite, but necessarily
multiplied by the albedo of the given surface quality (the lunar albedo aMoon is given in the Constant
table, while aMASAT of the satellite is in the text).

Finally, for using the magnitude formula, to find the observable magnitude of the satellite, we have
to consider the resulted flux of the scattered light at the observer, which is directly proportional to
the intensity, the albedo and the scattering area, but is inversely proportional to the distance on the
square:

(14.2) Iscat ≈
aobjIAobj

d2obj
(3 p)

Thus, the magnitude formula gives:

(14.3) mMASAT −mMoon = −2.5 log
IMASAT

IMoon
= −2.5 log

aMASATIAMASAT

d2MASAT
aMoonIAMoon

d2Moon

(3 p)

With numerical values:

mMASAT = 9.72m (2 p)

b) A moving point-like object will generally cause a line on the CCD image, resulting less photoelectrons
in a given pixel, than a similarly bright unmoving object. Since the MASAT–1 satellite is so small, it
is not resolved by the telescope – it will cause a seeing-sized spot at the focus of a telescope, like any
other stars on the sky, but since the text of the problem described: we should omit the seeing. Thus,
the image of any point source will be formed by the diffraction – so we shall use the approximate
formula of the Airy disk.

By the diffraction-limited imaging, the point-like sources illuminate a spot in the focal plane having
the angular diameter of the so-called Airy disc determined by the formula:

(14.4) ϕAiry = 2.44
λ

D
, (2 p)

while its linear size at the focus of f focal length telescope is:

(14.5) dAiry = fϕAiry (2 p)
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For the telescope of Baja Observatory, described in the text, at a typical visual wavelength of 0.55 µm:

dAiry = 2.44
fλ

D
= 2.44× 4200 mm× 0.55 µm

500 mm
= 11.27 µm (2 p)

This is very close to the pixel size of the applied CCD. However, this number is not necessary for
our calculation, since both the stars and the MASAT–1 are point-like sources, illuminating the same
number of pixels, thus the number of pixels will drop out from all comparative calculations. So does
the quantum efficiency value of the applied CCD.

For deriving the effect of the moving object, let us first calculate the scale of the image at the focus
of the 50 cm RC telescope of Baja (N is the f-number of the telescope, N = f/D):

S =
206 265′′

DN
=

206 265′′

500 mm× 8.4
= 49 ′′mm−1 = 0.049 ′′ µm−1 (3 p)

This means, that one pixel of the attached CCD describes P = 0.049 ′′ µm−1 × 9 µm = 0.44′′ side
length area on the sky. (3 p)

Now let us estimate the relative flux, resulted by a star having the limiting magnitude of the telescope-
CCD system (19.5m), by the magnitude formula:

(14.6) 19.5 = −2.5 log Φ19.5 → Φ19.5 = 10−7.8 s−1 (2 p)

And similarly, for the MASAT–1 brightness – observed with the same system, under the same
conditions, if it were an unmoving object:

(14.7) 9.72 = −2.5 log ΦMASAT → ΦMASAT = 10−3.9 s−1 (2 p)

Next, we have to calculate the angular speed of MASAT–1 at 900 km altitude above the observing
site, in order to derive the fluxes falling onto one pixel of the CCD on the telescope.

The velocity of the motion on a circular orbit with orbital radius r:

(14.8) vr =

…
GMEarth

r
, (2 p)

where r = h+REarth. (2 p)

With numerical values:

vr = 7404 m s−1 (1 p)

Hence, the visible angular speeds (aside from the Earth rotation):

(14.9) ωr =
vr
r

(2 p)

With numerical values:

ωr = 0.47 deg s−1 = 1696.8 ′′ s−1, (1 p)

when the satellite is near the local zenith.

For deriving the relative speed, which will be really exposed onto the CCD, we have to calculate the
angular speed of the observing site caused by the terrestrial rotation. At the latitude of ϕ it is given
as:

(14.10) ωrot,ϕ = ωrot,eq cosϕ (2 p)
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For Baja its numerical value:

ωrot,B = 10.4 ′′ s−1 (1 p)

Its component parallel to the direction of the satellite’s orbital motion:

(14.11) ωrot,B,i = ωrot,B cos iMASAT (2 p)

For Baja its numerical value:

ωrot,B,i = 3.6 ′′ s−1 (1 p)

Finally, the relative angular speed of the nanosatellite above the telescope:

(14.12) ∆ω = ωa − ωrot,B,i (2 p)

With numerical values:

∆ω = 1693.3 ′′ s−1 (1 p)

Since the satellite image is moving with a given ∆ω angular speed, this means that the flux coming
from the satellite is falling onto a given pixel only for a very limited time (independently of the expo-
sure time of the image, but acting similarly, than that). Considering our very simple approximation
we get an approximate "illumination time" for one pixel falling onto the line of the orbit:

(14.13) τ =
P

∆ω
(2 p)

With numerical values:

τ =
0.44′′

1693.3 ′′ s−1
= 2.61× 10−4 s (1 p)
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For finishing our estimation – to get the magnitude level of any pixel on the observable trace of
this nanosatellite, let us use the magnitude formula for them and one non-moving light source at
the detection limit. For doing this we have to multiply the relative fluxes ΦMASAT and Φ19.5 with
the respective illumination times. (For a 19.5m stars we should use the 2 min-long exposure time
mentioned in the text, which is needed to collect enough photoelectrons for the safe detection of such
a faint star.)

(14.14) mMASAT,trace − 19.5m = −2.5 log
τΦMASAT

τexpΦ19.5

(2 p)

With numerical values:

mMASAT,trace = 23.9m (2 p)

So, the trace of the moving 23.9m magnitude nanosatellite looks so faint on a (2 min-long exposure)
CCD image, as a ∼ 24m stars would be seen, but they fall surely below the detection limit for the
described telescope. Thus, the answer is definitely

NO, WE COULD NOT RECORD THE MASAT–1 (2 p)

using that telescope.

c) If we consider a real atmosphere, due to the effect of the atmospheric turbulences (the so-called
seeing) during the 2 minutes-long exposure the images of the stars will never be described by the
ideal Airy disk, but expanded to a much larger "seeing spot", which can be approximated by a
Gaussian profile. As mentioned in the text: in Hungary, its diameter at half-maxima is typically
3.5′′. This means, that the flux coming from a 19.5m star will be distributed over about a

FWHM
P

× FWHM
P

=
3.5′′

0.44′′
× 3.5′′

0.44′′
≈ 8× 8 (1 p)

pixels area. Thus, now the F19.5 flux will be distributed amongst 4 · 4π ≈ 50 pixels (for the sake of
simplicity: homogeneously), i.e. one pixel gets:

(14.15) Φ19.5 =
10−7.8

50
s−1 ≈ 10−9.5 s−1 (1 p)

As we have seen above, the satellite image is moving so fast along the focal plane (0.26 ms per a
pixel), that during this short time, the atmosphere can be considered to be still. Thus, the image of
MASAT–1 can further be approximated with the Airy-disc size also in a real atmosphere.

Let us correct our last magnitude formula for this fact:

(14.16) mMASAT,trace − 19.5m = −2.5 log
τΦMASAT

τexp
Φ19.5

50

(2 p)

With numerical values:

mMASAT,trace = 19.6m (2 p)

Under real conditions the situation is much better: the trace of the small nanosatellite is near the
detectability! Thus, owing to further secondary effects (pixel sensitivity inhomogenities, temporarily
changing transparency of the atmosphere, etc.), the trace of the cubesat can easily be seen on the
CCD of the 50 cm reflector. So in real cases, the answer can be YES.

YES, WE COULD HAVE RECORDED THE MASAT–1. (2 p)


